Sg RNA design instruction

Shanshan Zhang, Chen Lab

July 2016

- 1. Input gene name in NCBI gene;
- 2. Go to the section of mRNA and Protein(s);
- 3. Click on the link for the gene, for example NM_001168278.1 for WWTR1 (see the image below)

nRNA and Protein(s) 1. NM_001168278.1 → NP_001161750.1 WW domain-containing transcription regulator protein 1 See identical proteins and their annotated locations for NP_001161750.1 Status: VALIDATED Description Transcript Variant: This variant (2) differs in the 5' UTR compared to variant 1. Variants protein. Source sequence(s) AC012014, AK022036, AK130514, AL833852, DA338432

- 4. Go to the section of **FEATURES** to get the information regarding exon and CDS;
- 5. Get the sequence of the first exon inside the CDS; (Note: the exon is not necessarily be the first exon, since the first exon might not be in the CDS);
- Copy the above sequence to the following web page: http://www.broadinstitute.org/rnai/public/analysis-tools/sgrna-design-v1
- 7. Download the data in .txt;
- 8. Open a blank excel, File> open the above downloaded file, and follow the below order: Delimited---next----Tab----General ---finish;
- 9. Sort the result with **Score** from largest to the smallest; (We only use the sequence and score information, just ignore the information in the other columns);
- 10. The first 3 sequences with the score being > 0.5 will be adopted.
- 11. Design the oligo sequence:

Forward oligo: CACCG+ the sequence we get from the above procedure;

(Note: If the first nucleotide is G in the sequence, just add CACC before the sequence)

Reverse oligo: AAAC + reverse complement of the sequence we get + C

(Note: If the first nucleotide is G in the sequence, do not add C after the sequence).

CRISPR cloning notes

Note:

- 1. In step 1, we don't use DTT;
- 2. In step 3, for annealing reaction, a new protocol named ANNEAL-C is saved in the MAIN folder on the new PCR machine.
- 3. In step 5, we normally have 3 sgRNA plus 1 negative control ligation, totally 4.
- 4. Mix & go competent cells (Zymo Research T3011) are used in place of Stbl3 bacteria. 25ul competent cells for each ligation.

Brief Instruction for Mix & go cells

Single Tube Aliquots

- 1. To a tube of Mix & Go cells thawed on ice, add 1-5 μ l plasmid DNA1 , (add 1.25 ul plasmid into 25 ul mix &go cells) and then mix2 gently for a few seconds.
- 2. Spread 25 μ l onto a pre-warmed culture plate (Ampicillin selection only, see note below). Incubate the plate at the appropriate temperature (e.g., 37°C) for the colonies to grow.

Notes:

- 1 Keep the added volume of DNA less than 5% of the total.
- 2 To mix cells after DNA addition gently tap the tube with your fingers and then shake the tube downwards in a single motion from the elbow to collect the mixture at the bottom of the tube. Avoid exposing the cells to room temperature for more than a few seconds at a time.

Product Information

Product name	Item No. in Cell Culture Core Facility
FastDigest BsmBl (Fermentas)	MBIZR141
FastAP(Fermentas)	MBIZR074
T4 PNK (NEB M0201S)	NEBZR160
Quick Ligase (NEB M2200S)	NEBZR187
BsmBl (for enzyme digestion)	NEBZR280

Sequencing Primer Information

Sequencing primer after inserting sgRNA into H138 vector:

GAGACG CGTCTC is the BsmBI sequence, located at 2858-2869 bp on H138.

We design the forward primer at 2740-2757 bp, Crispr-F: CTTGGGTAGTTTGCAGTT;

However, the forward primer does not work.

We design the reverse primer at 2973-2990 bp (Sequence ---GAAAGGAGTGGGAATTGG)

By reverse complement of the above sequence, we get the reverse primer--
Crispr-R: CCAATTCCCACTCCTTTC, which works well.