

Welcome to ACDRS Webinar Series

October 26, 2020

VACCINE DEVELOPMENT

The Challenges (without and with a pandemic)

Emilio A. Emini, Ph.D., FCPP, FAAM
Director, TB and HIV Program
Bill & Melinda Gates Foundation

Expand Zoom window to "full screen mode"

Type your questions in the Q&A box

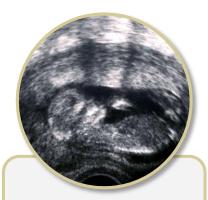
Select questions will be answered after the presentation

VACCINE DEVELOPMENT

The Challenges (without and with a pandemic)

Emilio A. Emini, Ph.D., FCPP, FAAM

26 October 2020


What is a vaccine designed to do?

- Prime the adaptive immune system to rapidly respond to an infection with the aim of preventing or mitigating the associated clinical disease.
 - A vaccine's primary objective is NOT necessarily to prevent infection.
- The adaptive immune system is designed to "learn" from previous infectious encounters.
- A vaccine essentially takes the place of the initial "teaching" encounter.

What form does a vaccine take?

- Live, attenuated version of the wild-type pathogen
- Chemically inactivated version of the pathogen
- Chemically inactivated version of a pathogen-derived toxin
- Recombinantly expressed protein
 - Mammalian cell culture
 - Yeast
 - Insect cells
- Free or conjugated polysaccharides
- Genetically modified viral or bacterial "vectors" expressing the vaccine target protein
- DNA or RNA expressing the vaccine target protein

VACCINES FOR HUMAN INFECTIOUS DISEASES

NEONATAL

Hepatitis B

PEDIATRIC

Polio

Diphtheria

Tetanus

Pertussis

Measles

Mumps

Rubella

Varicella

Rotavirus

Influenza

Hib

13v Pneumococcal conjugate

Hepatitis B

Hepatitis A

TB (BCG)

ADOLESCENT

Papillomavirus

Influenza

Meningococcal A, C, Y, W

Meningococcal B

ADULT

Influenza

Zoster

13v Pneumococcal conjugate

Vaccine constituents and the nature of the immune response

- An effective vaccine requires:
 - 1. The ability to co-engage the innate immune response in conjunction with the adaptive response
- To do this, a vaccine must contain:
- The adaptive immune system's effective target or <u>antigen</u>
 - Usually a defined element of the pathogen's structure (protein, polysaccharide)
- A stimulator of the innate immune response (the "danger signal")
 - Either an endogenous part of the pathogen/vaccine vector or
 - An <u>adjuvant</u> (e.g., alum, oil-in-water, quil A, bacterial components, CpG)

The method and timing of vaccine delivery is critical

- An effective vaccine requires:
 - 1. The initial co-elicitation of the innate response in conjunction with the adaptive response
 - 2. The establishment of the adaptive response "memory"
- Requires both initial "priming" and subsequent "boosting"
- Fully replicating vaccines (live attenuated or recombinant) may be delivered only once
- Non-replicating vaccines typically require:
 - Two closely spaced priming administrations
 - One or multiple widely spaced booster administrations

Vaccine development challenges without the concerns of a pandemic

- Vaccines are primarily designed for use in healthy individuals
 - Safety considerations are paramount
- Often the nature and target of the effective immune response is unknown or (at least) uncertain
- The physical characteristics of the vaccine and/or its formulation responsible for eliciting the protective immune response is never 100% certain
- Immune responses and efficacy using pre-clinical animal models cannot be extrapolated to humans with 100% certainty
- Vaccine development requires a high level of control, characterization, and measurement

Key elements of the vaccine development process

- Understanding of the nature of the infection's pathophysiology and the nature of the potentially protective immune response
 - Development of "relevant" animal models
 - Development of laboratory assays that will quantitatively and robustly measure the immune responses
- Designing the vaccine and formulation that will be most likely to elicit the desired memory immune response
 - Antigen structure/valency
 - Formulation for stability
 - Adjuvant selection
- Selecting the antigen expression systems and adjuvant formulations
 - Likely to be tolerable, safe, and immunogenic in humans
 - Scalable to productive manufacturing scale (facilities, raw materials, personnel)

Clinical evaluation occurs in a careful and controlled fashion

- Phase 1 (tens of subjects)
 - Initial definition of dosage (tolerability and immunogenicity) in healthy low-risk volunteers
 - Can use "experimental" forms of the vaccine
- Phase 2 (hundreds of subjects)
 - Confirmation of dosage in larger numbers and in at-risk volunteers
 - Establishment of dosage in "special" at-risk populations
 - Use vaccine representative of the final manufacturing process and formulation
- Phase 3 (thousands to tens of thousands of subjects)
 - Safety and efficacy in the at-risk population
 - Must use vaccine representative of the final manufacturing process/formulation and manufacturing scale
 - Demonstration of manufacturing consistency
 - Definition of critical quality attributes and associated limits

Parallel development risks

- Correct definition of the protective immune response
- Development of qualified assays to consistently measure the response
- Selection of a production process that is scalable
 - Scaling production and establishing a manufacturing network
- Definition of the vaccine's quality attributes that are most likely to be associated with efficacy
- Development of qualified assays to consistently measure the attributes
- Tolerance limits of the critical quality attributes
 - Impact on manufacturing consistency
 - Impact on stability and storage/transport/use
- Balance between immunogenicity and tolerability/safety in humans
- Efficacy and duration of efficacy
- Highly regulated and deliberate development process that represents substantial financial investment and risk
 - Many years (5-10), large numbers of experienced personnel, and large investments (100s of millions to > billion)

Regulatory control and interactions

- As with any pharmaceutical product, vaccine development is high regulated:
 - Pre-clinical safety studies (including reproductive toxicology)
 - Pre-clinical immunogenicity and "efficacy" assessments
 - Clinical study design and execution
 - Clinical and quality assay design, qualification, and validation
 - Establishment of release and stability criteria
 - Requirements for clinical evaluations in "special" populations and circumstances
 - Relevant age and at-risk groups
 - Concomitant vaccine usage
 - Immunocompromised
 - Pregnant women
 - Manufacturing consistency (across sites and time)
 - Post-approval requirements
 - Multiple agencies:
 - FDA, EMA, MHRA, CFDA, etc.
 - WHO PQ

Vaccine development in the time of a pandemic

- The uncertainties and risks of the development process are greatly amplified given the time constraints
- Mitigation is managed through a combination of luck and large at-risk financial investments
- Small and inexperienced vaccine developers can only afford limited risk
- Large and experienced multi-national developers also need to mitigate risk

COVID-specific risks

- Assumption regarding the nature of the protective immune response based on studies of related coronaviruses and on natural history studies of SARS-CoV2.
- Assumption regarding the preferred structure of the target antigen (the CoV2 spike protein) and method of presentation/production
- Assumption regarding the preferred adjuvant formulations
- Assumption regarding the manufacturability and scalability of the selected production methods
- Assumption regarding eventual efficacy, particularly in high at-risk populations
- Requirement to develop a vaccine within 12-18 months

Risk mitigations

- Parallel research studies to understand the nature of the protective immune response and development of possibly predictive animal models
- National and international investments into at-risk vaccine early development, manufacturing scalability, and large accelerated clinical studies
 - BARDA (U.S.): Biomedical Advanced Research and Development Authority
 - CEPI Alliance: Coalition for Epidemic Preparedness Innovation
 - COVAX Alliance: CEPI/WHO/GAVI
 - Provision of "push" and "pull" funding in addition to manufacturing networks and large clinical study capabilities
 - Regulatory coordination and alignment

Engaging multiple approaches in parallel

- mRNA or DNA antigen delivery
- Viral and bacterial (non-replicating and replicating) vaccine vectors
 - Non-replicating chimpanzee adenovirus virus vectors
 - Non-replicating human adenovirus vectors
 - Replicating measles virus vectors
 - Replicating vesicular stomatitis virus (VSV) vectors
- Recombinantly expressed protein with multiple adjuvant formulations
 - Insect cell expression of VLPs
 - Mammalian cell expression of stabilized antigens
 - Multiple adjuvant formulations
- Inactivated intact SARS-COV2

Considerations for Phase 3 evaluation of COVID vaccines: Demonstration of safety and efficacy

- International multi-site encompassing 30,000 to 60,000 subjects
- Endpoint definition of clinical disease: mild/moderate/severe?
- Statistical definition of vaccine efficacy (VE):
 - Target efficacy of 50-60% with exclusion of the 95% lower bound of 30%
- Demonstration of immunogenicity (efficacy?) in older adults and at-risk populations
- Sufficient safety/tolerability observations (numbers and time)
- Interim analyses to support "emergency use authorization" and/or conditional approval
 - Maintenance of study until completion

COVID Vaccine Distribution and Use: Uncertainties

- Lack of truly global regulatory harmonization
- Import/export restrictions
- Indemnification
- Cost of acquisition and use
- Transport capacity
- (Ultra) cold-chain requirements
- Administration and tracking

Lessons for the future

- Develop vaccine delivery platforms that can be easily adapted
- Maintain sufficient manufacturing capacity suitable for the available platforms
- Maintain sufficient fill/finish capacity
- Globally increase the number of organizations with vaccine research, development, and manufacturing capability
- Design prospective streamlined and coordinated regulatory pathways
- Expand the capabilities of international funding organizations

THANK YOU