

Academic Cell and Gene Therapy Development and Manufacturing

David DiGiusto PhD Executive Director Stem Cells and Cellular Therapeutics Operations

Stanford University School of Medicine

T-cell Manufacturing Process circa 2000

Fast forward 2016 - Bi-Specific CAR-T cells

- Process Challenges
 - Closed system processing of Apheresis products
 - CD4/CD8 T-cell enrichment required
 - Lentiviral Transduction in closed system
 - Bioreactor culture and harvest in closed system
- Analytical Challenges
 - Demonstrating simultaneous expression of both CARs
 - Deciding on in process metrics
 - Rapid reliable assay for RCL detection

Closed and (Semi) Automated Blood Cell Culture Systems

7 Day Process on Prodigy **Apheresis Washing Magnetic Bead Labelling** Target Cell Enrichment **Cell Growth Formulation Cell Stimulation** Viral Transduction **Cell Expansion Cell Harvest Release** Testing

CAR T-cells

Phenotypic Analysis of CD19/CD22 bi-Specific CAR-T

Anti-CD19 idotypic antibody to CD19 CAR (Laurence Cooper)

rhSiglec 2/Fc Chimera (CD22 on Ig stalk – R&D Systems)

CAR-T Production Metrics

Production summary

- Pros
 - Reproducible production of CAR-T cells
 - All cells passed all release testing
 - Semi-Closed system for production
 - Still open harvest/formulation steps performed in BSC
- Cons
 - Sole source provider for all reagents/tubing sets
 - Multiple device failures (valves, motors, tubing sets)
 - Expensive incubator for 6/7 days
 - Limits productivity in GMP suite

qPCR for detection of RCL

- Using VSV-G as a target
 - All lentiviral constructs contain VSV-G envelop sequences
 - Env is on a helper plasmid and should not be contained in transduced T-cells
 - RCL could be formed in VSV-G env is transferred to T-cells
- Determine Quality of the assay (MIQE)
 - Carefully quantified plasmid DNA as Control
 - Linearity, slope are as predicted by dilutions
 - Specificity and Limit of detection is established
 - Measure frequency of false positive and false negative

Minimum Information for Publication of Quantitative Real-Time PCR Experiments (MIQE)

Linearity and slope of qPCR of VSV-G Plasmid

Inclusion of 3% DMSO Improves Detection of Low Copy Number DNA

N = 16 independent experiments in triplicate

Pre-Clinical Qualification Runs and First 7 patient samples

11

Analytical Summary

- Pros
 - Simultaneous Detection of expression of both CAR proteins
 - Reproducible, sensitive RCL assay
 - Reliable detection of 10 copies of VSV-G
 - False Negative rate <3%
 - False Positive rate ~2%
 - Low Inter-operator variability
 - All testing completed and reviewed on day of product harvest (12 hours)

Cons

- Requires clean, dedicated space for assays
- Requires carefully quantified source of control DNA
- Approximately 1/40 products may be falsely considered positive for RCL
- Approximately 1/33 products may miss 10 copies of RCL

Acknowledgments

- LCGM CAR-T Production Staff
 - Lindsey Skrdlant, Kerri Tate, Cindy Tudesco, Brian Fox
- LCGM Analytical Team
 - Brett Keidaisch, Mario Lorente, Randall Armstrong
- Collaborators
 - Stanford Cancer Immunology and Immunotherapy Program (Crystal Mackall)
 - Miltenyi Biotech Tim Waters
 - NCI Terri Fry

Thank You for Your Attention!

Stanford University