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Overview of Current Research
I Adaptive Incorporation of Historical Data: Companies often

eager to borrow strength from historical data, but proper
amount is often subjective and controversial –

I Any prior distribution favorable to the company’s position risks
Type I error inflation

I Quality of historical data may vary widely, say by age or study
type (RCTs, case-control, single-arm, observational, etc.)

I Possible solutions:
I “Back out” the information content of the prior based on a

predesignated upper bound on Type I error
I Power Priors (Ibrahim and Chen, 2000): handy if degree of

borrowing, α, can be predetermined; however, often
computationally awkward to place a hyperprior on α

I Commensurate Priors (Hobbs et al., 2011, 2012): degree of
borrowing is determined in part by the “commensurability”
(similarity) of the information of the historical and current data
Example: For current and historical parameters θ and θ0,
p(θ|θ0, η) = N(θ0, η

−1) with a gamma or “spike and slab”
hyperprior on η (spike at a large η0, slab over 0 < η < ε)
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Important Applications

I Rare and pediatric diseases: Use of commensurate prior
enables cautious use of historical data on a rare disease, or
adult data for a pediatric drug or device approval (Gamalo et
al., 2016, DIA Bayesian Working Group paper)

I Children represent a large underserved population:
I 80% of children are treated off-label ⇒ safety, efficacy, and

PK/PD of such drug therapies is unknown
I drug development in children is often delayed or abandoned

due to difficulty in running clinical trials

I Ongoing work at Minnesota testing “Lorenzo’s Oil” in
adrenoleukodystrophy (ALD): PK/PD studies are underway;
these results inform a subsequent Bayesian adaptive Phase IIa
efficacy trial (Basu et al., 2015)

I Also working on power and commensurate prior models for
incorporating adult longitudinal data (Nadult = 1137) on both
efficacy and safety of the drug cinacalcet in pediatric kidney
disease (Npeds = 40)
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Important Applications (cont’d)

I Combining Randomized and Nonrandomized Data: “Correct”
the NR data using propensity score or other causal methods,
then incorporate into the analysis using commensurate priors

I Also working to incorporate differential propensity weighting
of patient-level data: For studies s = 1, · · · , S , where s = 1
denotes the primary study, incorporate study s > 2 according
to the “propensity” for its being included in study 1

I Account for bias arising from inter-study heterogeneity as
patient-level “weights” via a power prior ⇒ permits integration
of R and NR cohorts under the usual assumption that
confounding is accounted for by the measurable covariates

Currently doing this in the context of an HIV/AIDS study
(“FIRST”) that featured a optional randomized substudy, so
we have both randomized and nonrandomized groups that
meet the same entry criteria (Zhao et al., 2015)
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Control of Type I error in Regulatory Science

I Regulators tend to care much more about false positives
(Type I error) than they do about false negatives:

I Safety concerns: rofecoxib (Vioxx): a nonsteroidal
anti-inflammatory drug (NSAID) prescribed to over 80M
people for arthritis or other chronic pain; withdrawn from the
market in 2014 over concerns about increased risk of heart
attack and stroke associated with long-term, high-dosage use
(annual sales at that time: $2.5B)

I Efficacy concerns: flibanserin (Addyi; “female Viagra”): initial
trial indicated an increase of one satisfying sexual encounter
per month (baseline: 2 to 3/month); subsequent JAMA
Internal Medicine meta-analysis of eight studies of 5900
women decreased the benefit to just one-half of an additional
sexually satisfying encounter per month (annual sales: $11M)

Regulators often seek to control Type I error, and “pay” for this
with (sometimes large) increases in Type II error (false negatives).

Companies may feel differently, especially in early discovery phase!
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Identifying Interesting Patient Subgroups
I Clinical trials are traditionally designed to estimate the

“overall” effect γ of a treatment T , e.g.,

log odds = α + βX + γT

where X is a prognostic covariate (say, age; gives information
about the outcome regardless of treatment)

I BUT: Modern treatments don’t work the same way for
everyone (effect heterogeneity). Enhance model to include a
predictive covariate Z

log odds = α + βX + (γ0 + γ1Z )T

So if Z = 1 for males and 0 for females, then the treatment
effect is γ0 + γ1 for males, but γ0 for females

I Pharma companies no longer want to ask, “Does it work?”;
they want to ask, “For whom does it work?”
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Credible Subgroups

I Exclusive credible subgroup should contain only patients
who benefit

I Inclusive credible subgroup should contain every patient
who benefits

Exclusive ⊆ Benefiting ⊆ Inclusive

(Analogy with credible/confidence intervals: L ≤ θ ≤ U)

Inclusive

Bene ting

Exclusive

All Patients
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Formal Definition of Credible Subgroups
If SB is the benefiting subgroup, then the (1− α)-level inclusive
credible subgroup, SI , and exclusive credible subgroup, SE , are
subsets of the population such that the posterior probability given
the data D that SE ⊆ SB ⊆ SI is at least 1− α, i.e.

P(SE ⊆ SB ⊆ SI |D) ≥ 1− α

SI\SE: Insu cient Evidence

                                       
       

    
   

  
  
  
  

   
    

    T
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C: Evidence of No Bene t
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Credible Subgroups for Linear Models

I Suppose E (Yi |xi , zi , ti ) = x′iβ + tiz
′
iγ

I We seek the subgroup of patients for which

∆(z) = E (Y |x, z, t = 1)− E (Y |x, z, t = 0) = z′γ > δ ,

which we define as the benefiting subgroup.
I Possible implementation procedure:

1. Find the 1− α highest posterior density (HPD) region for γ
2. If z′iγ > δ for all γ in the HPD, then zi is in SE
3. If z′iγ > δ for any γ in the HPD, then zi is in SI

I Approximate frequentist guarantee under noninformative priors

I Works for entire (infinite) predictive covariate space;
conservative on a restricted covariate space

I More generally, ∆(z) could be difference in log odds, etc.
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Illustration in 1-d
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Regression to estimate personalized treatment effects, then
simultaneous thresholding (here, for δ = 0). Green region is SE .
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Example: Treatment for Alzheimer’s Disease

I Several covariates may be predictive
I Age: 55–90 years
I Sex: male and female
I Carrier: carrier of ApoE4 allele
I Severity: 5–45 in ADAS-Cog 11 score (lower is better)

I Response: Change in Severity (baseline → 24 weeks)

I Every covariate is treated as both prognostic and predictive
(Xij and Zij for patient i , covariate j)

I Assume response Yi is normally distributed

I Vague priors for intercept, prognostic, and overall treatment
effect

I Skeptical N(0, 1) priors for treatment-covariate interactions

I Use 10,000 samples from the (multivariate t) posterior...
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Regression Fit
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Posterior summaries of regression parameters; continuous covariates are

standardized. Only Treatment and Treatment × Age are “significant”

(no multiplicity adjustment).
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RCS Credible Subgroups

Severity

A
g

e

Female Non−Carriers

5 15 25 35 45

5
5

6
5

7
5

8
5

Severity

A
g

e

Female Carriers

5 15 25 35 45

5
5

6
5

7
5

8
5

Severity

A
g

e

Male Non−Carriers

5 15 25 35 45

5
5

6
5

7
5

8
5

Severity

A
g

e

Male Carriers

5 15 25 35 45

5
5

6
5

7
5

8
5

Severity

A
g

e

Female Non−Carriers

5 15 25 35 45

5
5

6
5

7
5

8
5

Severity

A
g

e

Female Carriers

5 15 25 35 45

5
5

6
5

7
5

8
5

Severity

A
g

e

Male Non−Carriers

5 15 25 35 45

5
5

6
5

7
5

8
5

Severity

A
g

e

Male Carriers

5 15 25 35 45

5
5

6
5

7
5

8
5

Left: 80% RCS credible subgroups with effect threshold δ = 0
Right: 50% RCS credible subgroups with effect threshold δ = 2

Color key: green, evidence of benefit; yellow, insufficient evidence;
red, evidence of no benefit.
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Current and Future Work

I Basic idea in Schnell et al. (2016a; this talk) enables
multiplicity-protected subset selection in normal hierarchical
linear models with a single endpoint

I Multiplicity-correcting methods (such as ours) maintain
extremely high specificity at the expense of sensitivity;
uncorrected methods do the opposite

I Extension to multiple endpoints (say, 2 efficacy and 1 safety)
– requires a utility function, or some notion of admissibility

I Broadly, a treatment is admissible ⇔ there is no other
treatment that is better w.r.t. every endpoint

I Schnell et al. (2016b) rigorize this to weak and strong
admissibility

I Extension to multiple treatments: complicates assessment of
which comparisons we care about (i.e., count for multiplicity
adjustment)
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