From Stories to Evidence

Patient Preferences in Benefit-Risk Evaluations

Juan Marcos Gonzalez, PhD jm.gonzalez@duke.edu

U Duke Clinical Research Institute FROM THOUGHT LEADERSHIP TO CLINICAL PRACTICE

"Patient preferences are critical in determining when a product's benefits outweigh its risks...."

-- Robert M. Califf (JAMA 2017)

"Treat data on patient preferences with the same level of scientific rigor as we would clinical data, and present it to regulators as such."

--Bennett Levitan, Director Epidemiology Janssen R&D

"Qualitative or quantitative statements of the relative desirability or acceptability of attributes that differ among alternative interventions."

Medical Device Innovation Consortium (PCBR Framework Report 2015)

Revealed Preferences

Inferred from patients' actions

Stated preferences:

Inferred from patients' statements

Preference Information

Revealed Preferences

- Elicited within real-world decision context
- Confounded with many factors that are not observed
- Current treatment alternatives are limited and may not cover the benefits or risks of interest

Preference Information

Stated Preferences

- Elicited under experimentallycontrolled scenarios
- Alternatives can be new to respondents
- Decisions have no real-world consequences

The value of things is defined by what people pay for them

The value of things is defined by what people would give up for them

FDA Obesity Study

Ho et al. Surgical Endoscopy (2015)

FDA Obesity Study

Ho et al. Surgical Endoscopy (2015)

Stated-Preference Methods

- Eliciting stated-preference data
- Analyzing stated-preference data

In summary

- Preferences are a key part of judgments about benefits and harms of treatments
- Evidence on preferences must be treated rigorously
- There are two types of preference data
 - Revealed preference data Messy and not experimentally controlled
 - Stated preference data Stylized with no direct consequences
- Stated preference methods rely on signals of relative desirability between outcomes or treatments
- Relative preference data allows evaluating utility-equivalence/thresholds between benefits and risk of harms for treatments (stated risk tolerance)

Eliciting Stated-Preference Data

U Duke Clinical Research Institute

FROM THOUGHT LEADERSHIP TO CLINICAL PRACTICE

Rating

Ontions	N	on-CV deat	h	Stroke
options	CV death		MI	
1 - Rosi+adj				
2 - Adj only	0.00	0.00	0.00	0.00
	T	T	T	T
	Sc.	94	28	3 ^g
	1	1	1	1
	4.00	4.00	5.00	5.00
Input Values	100	100	35	30
Input Values	4.00	4.00	5.00	5.00

IMI Protect, 2015

Ranking

Most Important		Least Important
0	Washing and Drying Body Completely	0
0	Using the Toilet Without Accidents	0
0	Cooking a Light Meal	0
0	Taking Medicines	0
0	Staying at Home Alone	0

Zhang et al., 2015. JCM

Tradeoff

Gonzalez et al., 2016. BJD

Rating	Ranking	Tradeoff
Likert scales	Full-ranking exercise	Contingent Behavior
Point-allocation technique	Partial-ranking exercise (e.g., best-worst scaling)	Discrete-choice experiments
Swing weighting		Standard Gamble
Analytic Hierarchy Process		Time-tradeoff

Rating

- Elicit the intensity of preferences in a cardinal scale
- Provide direct preference weight values
 per respondent
- Must assume that tradeoff context does not affect rating
- Does not require an experimental design and often require simple statistical analysis tools

- Het he states alley of options
- Provida a ultiple signals for uncertaing preference weight value
- Must assume that tradeoil context coss not affect ranking
- May requere experimental design and can require complex statistical analysis

- Ellot respondents' witingnese to acced
- Provide multiple signals ka underheng preference weight value
- Repure experimental pasign and ican require complex statistical analysis

Rating Methods

- Elicit the intensity of preferences in a cardinal scale
- Provide direct preference weight values per respondent
- Must assume that tradeoff context does not affect rating
- Does not require an experimental design and often require simple statistical analysis tools

Ranking

•

•

•

- Elicit the relative utility of options
- Provide multiple signals for underlying preference weight value
- Must assume that tradeoff context does not affect ranking
 - May require experimental design and can require complex statistical analysis

- Elicit respondents' willingness to accept tradeoffs
- Provide multiple argnals for underlying preference weight value
- Require experimental design and can require complex statistical analysis

Ranking Methods

 Provide a way to infer how many respondents would have chosen one alternative over the other

Ranking is not necessarily a natural way to think about preferences in everyday behavior

		Tı	radeoff
			Elicit respondents' willingness to accent
			tradeoffs
		•	Provide multiple signals for underlying preference weight value
		•	Require experimental design and can require complex statistical analysis

Gonzalez et al., BMJ 2016

Gonzalez et al., 2016. BJD

What information is provided by preference-elicitation methods?

Risk tolerance for hip-replacement surgery

Fig. 2 Comparison of parameter estimates based on best-worst scaling and conjoint analysis. BWS best-worst scaling

Hollin et al, 2015. The Patient Caregiver Preferences for Emerging Duchenne Muscular Dystrophy Treatments

Table 3. WTP estimate using dichotomous choice WTP technique

Attributes	Coefficient	Р
Constant Bid	$1.26 \\ -0.0003$	0.001
Number of individuals Log-likelihood Chi-Squared	325 -197.72 55.06	
Individual predictions	69%	
Mean WTP $(0 \Rightarrow \infty)$ 95% confidence intervals	£4893 £4188–£6173	

Table 4. WTP estimate using the choice experiment

Attributes of service	Parameter	р	Marginal WTP for unit change in attribute $(\alpha j/\alpha 4)$	Current system ^a	WTP for current system ^a
Non-price attributes					
Attitudes of staff (α_1)	0.767	0.001	£852	0.8	£682
Continuity of care (α_2)	0.208	0.020	£231	0.7	£162
Time on waiting list (α_3)	-0.076	0.001	-£84	6 months	-£504
'Cost per attempt' (α_4)	-0.0009	0.001	_	1500	N/a
Chance of leaving the service with a child (α_5)	0.142	0.001	£157	27.9%	£4380
Follow-up (α_6)	0.288	0.006	£320	0.5	£160
Number of individuals	325				
Number of observations	3893				
Log-likelihood	-1150				
Chi-squared	27.36				
	(0.001)				
Individual predictions	79%				
Welfare measures					
Total WTP					£4880 ^b
95% confidence intervals					£4532-£5284

Ryan, 2004. Health Economics Willingness to Pay for IVF ^aIVF service valued in the DC WTP question.

Most Important Attribute-Direct Question on Post-Survey

	Conjoint analysis group $(n = 50)$	Rating / Ranking $(n = 54)$
Ability to reduce colorectal incidence and mortality	56%	61%
Discomfort	12%	7%
Nature of test	8%	6%
Frequency	12%	6%
Risk of major complications	2%	4%
Out of pocket costs	10%	17%

Unlabeled Test Preference

	Conjoint analysis (n = 50)	Rating/Ranking $(n = 54)$
FOBT-Based attributes and levels	26%	20%
Sigmoidoscopy-based attributes and levels	0%	0%
Colonoscopy-based attributes and levels	44%	39%
Radiologic test-based attributes and levels	26%	39%
No test	4%	2%

FOBT = fecal occult blood test

Pignone et al., 2012. Journal of General Internal Medicine

In summary

- 3 ways to elicit stated preferences
 - Rating
 - Ranking
 - Tradeoff
- Tradeoffs are closer to the construct of preferences in economics
 - May not be feasible to obtain tradeoff information
 - May need a different construct related to preferences
- Assumptions need to be made to turn rating and ranking data into tradeoff information
 - Whether the assumptions hold is an empirical question
 - Evidence suggests that sometimes these assumptions are reasonable

Analysis of Stated-Preference Data

U Duke Clinical Research Institute

FROM THOUGHT LEADERSHIP TO CLINICAL PRACTICE

Experimental Design

- <u>First step</u> in data analysis
- The experimental design determines
 - The appropriate analysis tools
 - The feasible outputs
 - Interpretation of results

Utility-equivalence-Based

The experimental portion of stated-preference elicitation is about selecting the best points to be able to estimate this preference surface (or a specific point in the surface) In an unbiased way

Utility

This preference surface allows us to predict utility values beyond the points we asked about

Analysis options

Equivalence-Based Analysis

Non-equivalence methods

In summary

- Experimental design is a crucial part of the analysis of stated-preference data
 - Defines appropriate analysis tools
 - The feasible outputs
 - Interpretation of results
- The information collected—whether preference measures or risk tolerance measures—also defines analysis
 - Data on measures of interest generally require simpler methods (may be more onerous to respondents)
 - Individual-level data generally can be analyzed with simpler statistical tools (require more information per respondent)
- Utility-equivalence data generally require simpler analysis methods (usually have limited information on variations given decision context)

