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Structured vs. Unstructured Data

row ID | patient ID | hospital ID | order | ICD9 code
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IMPRESSION ( ACC 6075491 ) :

addendum beginsexam association only. addendum endsbilateral
diagnostic digital mammogram with computer-aided detection
3/31/2011 8:14 amright axillary ultrasound 3/31/2011 8:14 am
indication: female, 73 years old, right breast lateral tenderness, no
discrete mass. history:post-menopausal patient. comparison: 3/7/2006
(stanford hospital), 7/24/2009 (advanced medicine center) technigue:
full-field digital mammograms were obtained with computer-aided
detection to assist in interpretation of the study, including bilateral
craniocaudal and mediolateral oblique views coma with an additional
right lateral view. real-time breast ultrasound was then performed
targeted to

findings: mammogram: the breast tissue is largely fatty. there is a
skin bb marker over a palpable abnormality in the right axillary region.
there are no features to suggest malignancy. ultrasound: targeted
ultrasound reveals a normal appearing lymph node in the 11 o'clock
position 10 cm from the nipple in the right axillary region 9x 6 x 4 mm.
otherwise no discrete solid or cystic masses identified.

impression: 1. right breast: bi-rads 1, negative. left breast: bi-rads 1,
negative. recommend the finding prompting ultrasound should be
followed on a clinical basis alone. assuming clinical stability,
recommend annual screening mammography.

~75%



The utility of looking into notes

Count

Count

L .
ICD-9 Code, Pre.-'P:)lst Days Text Mention, Pre.-'F;;st Days
POSITIVE NEGATIVE ABSENCE OF
TYPE OF EHR DOCUMENTATION DOCUMENTATION DOCUMENTATION
INFORMATION OF URINARY OF URINARY OF URINARY
INCONTINENCE INCONTINENCE* INCONTINENCE
Text 450 1035 3868
ICD-9 = n/a 5349

Note: *Negative Documentation refers to patients reporting that they are not suffering from urinary incontinence

http://repository.edm-forum.org/egems/vol4/iss3/1/



The utility of looking into notes

Atrial Fibrillation IcD Alzheimer’s disease

Medication Primary Notes

Multiple Sclerosis ICD Parkinson’s disease

Primary Notes

ICD

Wei WQ, et al 2015 JAMIA




NLP or Text-mining

Natural language processing  Text mining is the process of

(NLP) is a discipline which discovering and extracting
attempts to understand knowledge from
human (natural) languages unstructured data

using computers
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Clinical questions



Androgen deprivation & Alzheimer’s risk

Terms, Concepts Variables Anaphylaxis | BF——
z Rhabdomyolysis O
@9’ ‘ 1, o [ = 1 Tuberculosis —0—
AR
z 11 o 1 Allergic rhinitis H1—
| 1 0 ey
q Abdominal aortic aneurysm —{—
1 1
—m
Wi
c
g [
Q)
[«
Drug: Dis Devices P d

< Features 2

www.tinyurl.com/JCO-ADT



Androgen deprivation & Dementia risk
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Years
Number at risk
No ADT 7446 5448 4587 3889 3231 2708 2233 1833 1518 1214
ADT 1826 1177 872 645 470 367 282 211 160 124



Input Text

53 8 past medical surgical history: positive for
. 44 5 atrial fibrilla - patient avr
PAST MEDICAL/SURGICAL HISTORY: Positive for t _
atrial fibrillation. The patient had AVR 6 NegEx and ConText 8539 8 0 peasteoo lEeninheeliagtenialciscas
years ago. Peripheral arterial disease with 3 16 (colon) VREUEMEIOn, PR EIRE TRy,
hypertension, peripheral neuropathy, Patterns 996 3 _ . ~ atherosclero: . hemorrhoids, proctitis,
atherosclerosis, hemorrhoids, proctitis, 1363 13 (atr!al fibrillation) cabg, and cholecystectomy.
CABG, and cholecystectomy. ; %9 (period)
5087 12 family history: positive for
FAMILY HISTORY: Positive for 129 6 atherosclerosis, hypertension, autoimmune
atherosclerosis, hypertension, autoimmune 158 6 diseases Family.
diseases in the family. 1 3
B 16091 3 (peripheral arter disease) - . -
B : Unitex ) review of systems: weight loss pounds
Sf\é:ﬁvﬂv EEQSTZEM?movnvz']ghtsagfingSngpO“"ds 354 ig months, shortness of breath, constipation,
breath, constipation, bleeding from 4624 2 2'%‘“”9 " h?”“’:'fh"ids- Crea:ed
hemorrhoids, increased frequency of 2 21 (comma) requency of urination, muscle aches,
urination, muscle aches, dizziness and 6198 2 (atherosclerosis) dizziness and faintness, focal weakness and
faintness, focal weakness and numbness in 2 15 (comma) numbness both legs, knees and feet.
both legs, knees and feet. 2835 2
2 11
LABORATORY DATA AND RADIOLOGICAL RESULTS: K | dg g ph 10647 2 (proctitis) laboratory data and results:
The patient had a chest x-ray, which showed nOW e e ra 2 9 patient chest x-ray, which
cardiomegaly with atherosclerotic heart 2026 2 (cabg) cardiomegaly atherosclerotic heart
disease, pleural thickening and small pleural — 2 4 disease, pleural thickening and small pleural
effusion, a left costophrenic angle which has 11 2 effusion, left costophrenic angle which
not changed wgggucompared toTﬁrlor . . 1907 4 (cholecystectomy) not changed compared i
examination, pattern. e patient also 1 15 eriod: inats
had a head CT, which showed atrophy with old @ b examination. copd pattern.
ischemic changes. No acute intracranial et e o aEToRNY eracramial
Findings. sche -
Findings.
DISCHARGE DIAGNOSIS: Syncope. _True Internal Represgntatlm} R . ;
(with some keys shown for illustration) discharge diagnosis:
DISCHARGE MEDICATIONS: The patient was
discharged on the following medications; " . discharge
Cardizem 90 mg p.o. thrice daily, digoxin Oral Antihistamines ) following
2-123_"\9 péozloncS dal;y. :llopurlnol ;00 mg ‘ . Reconstructed Representation =——3#-d
wo times daily, Coumadin 4 mg p.o. q.h.s., . H
| 5né Remeron 15"7g pob- drnes: ] Defer binding

tf df NN i} VP T-1 -2 -3 to Concepts
D Term-1 {150,879 (90,000 | 0.90 | 0.05 | .. | 0.03
D
ID Term-n

Juvenile Idiopathic Arthritis
T " ICD 9 codes
Vent / butcome concepts 696.0, 714.0, 714.2, 714.3, 714.9, 720.2, 720.9
Juvenile Idiopathic Arthritis
Terms:

o Juvenile idiopathic arthritis, JIA
Uveitits Juvenile rheumatoid arthritis, JRA
Iridocylitis Psoriatic arthritis

Juvenile spondyloarthropathy,

- spondyloarthritis,
Q&'T:I: | enthesitis related arthritis,
e | || sacroiliitis,

reactive arthritis

Count present, positive
| T mentions, about the patient
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Insights



Detecting drug-treats-disease relations

* 12b2 2010 Challenge on information extraction
from free text

e Goal: find NER, assertions, and relationships
between entities.

— Relationships included <Drug used to treat
Indication>

* Best performance: F1 ~ 0.75 for relations
* Problem solved?



Off-label use via machine learning

 We don’t care about note-level accuracy.
* Can we detect useful signals from aggregate
statistics based on noisy low level features?

* For given drug-disorder pair, is drug used to treat
the disorder?

e Off-label if it is not approved.



Training and test sets
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Off-label drug use

EMR
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‘Just enough’ text mining



Trade-off: simple or advanced [text-processing]

1249
Notes from
i2b2 2008
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9 million
Textual
notes from
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Learning curve — Sensitivity

0.75

0.70

Mean

0.65

0.60

Full 1/2 1/4 1/8 1/16 1/32 1/64
fraction



A note on evaluating your “NLP”

1. String matching: can you grep, can you grep with typos, can you find the
right term, span etc.
2. Knowledge graph handling: can you use a knowledge graph to infer that
Simvastin is a type of statin
3. Context and negation: can you differentiate mentions that are about
patient vs. other, negated, historical vs present
4. Intuitive: can you infer things that are not mentioned
* e.g. 5 feet tall, 200 Ibs —> obesity
5. Phenotype: can you recognize [known] phenotypes correctly
* e.g. exposure to drug + ALP >= 2x ULN + normal lab measurements
prior to exposure to drug --> drug induced liver injury
6. Functional: how accurately can the output of the processing be used to
accomplish a research task, such as detect adverse drug events
7. Utility: if the method was used to generate results, would it change
practice
* e.g. we give pneumovax to a 100 more patients, because text-mining
told us that they had a splenectomy



Ask: about the cost-utility trade-off

* EHR mining is a process
* Text is one of the many sources 2,
* Time needs special handling ¢ N

. . . . * Cost
* Machine learning is used in / * Utility

many places i

* Sorting the documents that
contain the text of interest

* Inthe processing of the text to
extract features and facts ("NLP”)

* Inthe processing of time to extract
features Drugs  Diseases _ Devices  Procedures

* Finding associations among the & Features =
extracted features

& Persons =
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