

Safety Considerations for Gene Editing and Other Gene Therapy Products: An FDA Perspective

Ying Huang, Ph.D.

Division of Clinical Evaluation and Pharmacology/Toxicology (DCEPT)

Office of Tissues and Advanced Therapies (OTAT)

Center for Biologics Evaluation and Research (CBER)

Public Lecture

FDA Visiting Scientist Program, UCSF-Stanford

Center for Excellence in Regulatory Science and

Innovation (CERSI)

October 3, 2017

Diversity of OTAT-Regulated Products

Gene therapies (GT)

- Ex vivo genetically modified cells
- Non-viral vectors (e.g., plasmids)
- Replication-deficient viral vectors (e.g., adenovirus, adeno-associated virus, lentivirus)
- Replication-competent viral vectors (e.g., measles, adenovirus, vaccinia)
- Microbial vectors (e.g., Listeria, Salmonella)

Stem cells/stem cell-derived

- Adult (e.g., hematopoietic, neural, cardiac, adipose, mesenchymal)
- Perinatal (e.g., placental, umbilical cord blood)
- Fetal (e.g., neural)
- Embryonic
- Induced pluripotent stem cells (iPSCs)

Products for xenotransplantation

Functionally mature/differentiated cells (e.g., retinal pigment epithelial cells, pancreatic islets, chondrocytes, keratinocytes)

Blood- and Plasma-derived products

- Coagulation factors
- Fibrin sealants
- Fibrinogen
- Thrombin
- Plasminogen
- Immune globulins
- Anti-toxins
- Snake venom antisera

Combination products

- Engineered tissues/organs
- Devices
- Tissues

FD/

Translational Development for Gene Therapy (GT) Products

- ICH Documents
- FDA Guidance Documents
- FDA Regulations (21 CFR) and statutes
- Standards (ISO, ASTM, USP, ANSI)

- Basic Research/Discovery
- Proof-of-Concept (POC) Studies
- Toxicology/Safety
- Biodistribution (BD)

- Pre-pre-IND discussion with CBER/OTAT
- Pre-IND meeting with CBER

General Considerations for Preclinical Testing Programs

- Preclinical study considerations
 - Objectives
 - General program design
- Recommendations for assessment of cell therapy, gene therapy, and therapeutic vaccines
- Explicitly incorporates the 3R's of animal testing
 - Reduce, Refine, Replace

Guidance for Industry

Preclinical Assessment of Investigational Cellular and Gene Therapy Products

Additional copies of this guidance are available from the Office of Communication, Outreach and Development (OCOD), (HFM-40), 1401 Rockville Pike, Suite 200N, Rockville, MD 20852-1448, or by calling 1-800-835-4709 or 301-827-1800, or e-mail ocod@ifda.hhs.gov, or from the Internet at

http://www.fda.gov/BiologicsBloodVaccines/GuidanceComplianceRegulatoryInformation/Guida nces/default.htm.

For questions on the content of this guidance, contact OCOD at the phone numbers or e-mail

U.S. Department of Health and Human Services Food and Drug Administration Center for Biologics Evaluation and Research November 2013

Preclinical Program Objectives

- Support the <u>rationale</u> for the clinical trial
- Make <u>recommendations</u> regarding clinical trial design
 - Dose (e.g., initial safe starting dose level, doseescalation scheme, dosing schedule)
 - Eligibility criteria / patient population
 - Clinical route of administration
 - Clinical monitoring (e.g., safety, activity, duration of follow-up)
- Support the assessment of benefit:risk profile for subjects

Safety Assessment in Animals for GT Products

- Goal employ study designs that address safety and the scientific basis for conducting a clinical trial
 - Robust study designs based on product characteristics and risks
- Study Designs:
 - Pharmacology / proof-of-concept (POC) studies in relevant animal model(s) of disease / injury, as feasible
 - Toxicology (T) studies in healthy animals
 - Hybrid pharmacology-toxicology study design (POC + T)
 - Vector biodistribution
 - Additional studies for specific safety considerations

Gene Editing and Gene Therapy

- Gene therapy products mediate their effects by transcription or translation of transferred genetic material, or by specifically altering host genetic sequences
- Common gene therapy products:
 - Plasmids
 - Viral / bacterial vectors
 - Ex vivo genetically modified cells
 - Gene edited (GE) products

Examples of Therapeutic Applications for GT Products

- Hematologic disorders
- Neuromuscular disorders
- Ocular diseases
- Skin diseases
- Lysosomal storage disorders
- Viral infections
- Cancer

GT Products in CBER

- First gene therapy Investigational New Drug (IND) submitted in 1989
- Nearly 600 active GT INDs in CBER (~1000 INDs submitted)
- First gene editing IND submitted in 2008
- 13 gene editing INDs in CBER

Unique Aspects of Incorporating GE

- Process by which DNA is inserted, deleted, or replaced in the genome using engineered site-specific nucleases
- Nucleases create site-specific double strand breaks
 (DSBs) at desired locations in the genome
- Induced DSBs are repaired through non-homologous end-joining (NHEJ) or homology directed repair (HDR)
- This process results in targeted modification (edits)

Current GE Technologies

- Four families of engineered site specific nucleases:
 - Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR/Cas systems)
 - Mega nucleases
 - Transcription Activator-Like Effector Nucleases (TALENs)
 - Zinc Finger Nucleases (ZFNs)
- Delivery method
 - Viral vectors, plasmid DNA, mRNA, protein, ribonucleotide protein (RNP) complexes
 - Direct administration in vivo
 - Genetic modification of cells ex vivo

Regulatory Review for GT Products Incorporating GE

- Science-based approach
- Benefit-risk analysis
 - Potential to:
 - Correct or remove defective genes
 - Eliminate disease phenotype
 - Improve therapeutic effects
 - Risk of:
 - Off-target modifications in the genome
 - Genome instability caused by chromosomal translocations / rearrangements
 - Unknown long term outcomes from on- or off-target genome editing events or due to the delivery system (vector)

Safety Considerations (1)

- Genome modification specificity and characterization
 - Optimization of GE components and targeting elements (e.g. CRISPR / Cas9 / gRNA)
 - Type and degree of genome modifications involved
 - Minimizing off-target editing events
 - Appropriate insertion of the intended transgene in the genome

Safety Considerations (2)

- Potential adverse effects due to genomic DNA cleavage at on- and off-target sites
 - Off-target events related to oncogene activation and disruption of protein-encoding sequences, gene regulatory elements, microRNAs, etc.
 - On- and off-target events impacting on chromosomal structure, translocations, rearrangement
 - Impact on the 'landscape' surrounding on-target events

Safety Considerations (3)

- Adverse effects due to gene mutations introduced by the nuclease and the endogenous DNA repair activity
- Immunogenicity
 - GE components that are foreign to humans, (e.g. expressed nuclease, RNP)
 - Overexpression of the transgene product
 - Potential generation of undesired peptides / proteins from the edited genomes
- Adverse impact of the delivery system (e.g. insertional mutagenesis potential)

Assessing Safety (1)

- The testing strategy should:
 - Consider human relevance when selecting test systems
 - Incorporate in vitro and in vivo models, as appropriate
 - Address safety for the GE components and the proposed clinical delivery system
 - Consist of appropriate and informative assessments of both on- and off-target editing
 - Products that are species specific
 - In vitro studies with human cells
 - In vivo studies with animal surrogates
 - In the case of direct in vivo GE, both identification and characterization of off-target cells / tissues should be considered

Assessing Safety (2)

- Has there been a thorough evaluation of potential offtarget sites using both biased and unbiased methods?
 - What types of off-target editing events are occurring?
 - What is the impact of these events?
- What is the percent cleavage at the on- versus the offtarget sites?
- What are the kinetics of nuclease cleavage and the persistence of cleavage activity?
- How are the nucleases and donor sequences delivered?

Impediment to Addressing GE Safety Concerns

- No 'gold standard' for predicting and identifying off-target genomic modifications
- No 'gold standard' for evaluating large genomic modifications or genomic instability
- Possible limitations with use of various animal models / species for safety evaluation and subsequent identification of potential risks
- Not all off-target genomic modifications will necessarily lead to adverse biological consequences
- Accounting for genomic variation between individuals in humans

Current In Vitro Methods for GESafety Assessment (1)

- "Small" (up to 100 bp) insertions and deletions (indels)
 - In silico prediction and deep sequencing of the predicted cleavage events (biased)
 - Biochemical approaches (non-cell based, unbiased)
 - Cellular approaches (cell-based, unbiased)

Current In Vitro Methods for GE Safety Assessment (2)

- "Large" changes (translocations, inversions, deletions, etc.) by cleavage that can occur inter- or intrachromosomally
 - In silico prediction and molecular analysis
 - Cellular approaches (e.g. fluorescence in situ hybridization [FISH]; karyotyping, etc.)
 - Whole genome analysis by sequencing

Use of Animals for Assessing GE Safety

- There are significant differences in the genome between humans and animals that can make identifying the appropriate animal model / species challenging
- What is a relevant in vivo test system?
 - Can the clinical product be evaluated or should animal surrogates for the GE components be used? Are the animal surrogates representative of the clinical constructs?
 - For ex vivo modified cells, what cell source should be used? Is it patient-derived cells, healthy human donor cells, or animalderived cells? Do they respond to GE in a manner similar to the clinical cell source?
 - For in vivo delivery, is the selected animal species suitable for assessing both the GE components and the delivery vector?

When to Engage CBER/OTAT

Pre-Pre-IND Interactions

- Non-binding, informal scientific discussions between CBER/OTAT nonclinical review disciplines (CMC and Pharm/Tox) and the sponsor
- Initial targeted discussion of specific issues
- Not a discussion on definitive safety studies
- Primary contact
 - Mercedes Serabian (<u>mercedes.serabian@fda.hhs.gov</u>)
 Chief, Pharmacology/Toxicology Branch 1 (PTB1)

When to Engage CBER/OTAT

Pre-IND Meetings

- Non-binding, but formal meeting between the FDA and sponsor
- Briefing package should include summary data and sound scientific principles to support use of a specific product in a specific patient population

Guidance for Industry
Formal Meetings Between the
FDA and Sponsors or
Applicants

Summary

- Comprehensive product characterization is key to understanding product risk
- The preclinical testing program may need to be adapted to the specific GT product and level of perceived risk
- New in vitro and in vivo test models should be considered as the science and technology advances
- The 3Rs should be applied to preclinical testing programs
- Communication with FDA at early stages of product development may be beneficial

References

- Guidance for Industry: Preclinical Assessment of Investigational Cellular and Gene Therapy Products (November 2013) http://www.fda.gov/downloads/BiologicsBloodVaccines/GuidanceComplianceRegulatoryInformation/Guidances/CellularandGeneTherapy/UCM329861.pdf
- Draft Guidance for Industry: Formal Meetings Between the FDA and Sponsors or Applicants of PDUFA Products (March 2015) https://www.fda.gov/downloads/drugs/guidancecomplianceregulatoryinformation/guidances/ucm437431.pdf
- Guidance for Industry: Considerations for the Design of Early-Phase Clinical Trials of Cellular and Gene Therapy Products (June 2015) http://www.fda.gov/downloads/BiologicsBloodVaccines/GuidanceComplianceRegulatoryInformation/Guidances/CellularandGeneTherapy/UCM359073.pdf
- Human Genome Editing: Science, Ethics, and Governance; A Report of The National Academies of Sciences, Engineering and Medicine; The National Academy Press, Washington DC, 2017. https://www.nap.edu/catalog/24623/human-genome-editing-science-ethics-and-governance

Contact Information

Ying Huang, Ph.D.

Ying.huang@fda.hhs.gov

Regulatory Questions:

OTAT Main Line - 240 402 8190

Email: OTATRPMS@fda.hhs.gov and

Lori.Tull@fda.hhs.gov

FDA Headquarters

OCTGT Learn Webinar Series:

http://www.fda.gov/BiologicsBloodVaccines/NewsEvents/ucm232821.htm

- CBER website: <u>www.fda.gov/BiologicsBloodVaccines/default.htm</u>
- **Phone:** 1-800-835-4709 or 240-402-8010
- Consumer Affairs Branch: <u>ocod@fda.hhs.gov</u>
- Manufacturers Assistance and Technical Training Branch: <u>industry.biologics@fda.gov</u>
- Follow us on Twitter: https://www.twitter.com/fdacber

