Evaluation of Next-Generation Silicon Nanopore Membranes Optimized for Diffusive Clearance

Steven Kim1,2, Charlie Blaha2, Zohora Iqbal2, Clarence Chow2, Rishi Kant2, Ben Chui3, Ken Goldman4, Jaehyun Park2, Eun Jung Kim2, William Fissell5, Shuvo Roy2

1 Nephrology, UCSF
2 Bioengineering, UCSF
3 Ben Chui Consulting
4 H-Cubed
5 Nephrology, Vanderbilt University

Background:
Silicon nanopore membranes (HF-SNM) designed for hemofiltration have demonstrated remarkable permeability and selectivity. However, diffusive clearance was hindered by their thickness. Here we report hemodialysis-SNM (HD-SNM) with enhanced diffusive clearance.

Methods:
A new MEMS (microelectromechanical systems) fabrication protocol utilizing nested etch-back techniques was used to decrease the effective SNM thickness (HD-SNM 100um vs. HF-SNM 400 um). Diffusive clearances of polyethylene glycol coated HD-SNM and HF-SNM with sub-10 nm pore sizes were tested in a parallel plate flow cell. PBS with Cr 10 mg/dL, BUN 90 mg/dL, and albumin 3 g/dL was recirculated (45ml), while dialysate (160 mEq NaCl) was recirculated in a counter-current fashion. At Qd=Qb=10 ml/min and zero transmembrane pressure (TMP) clearance was independent of flow rate. Solute clearance (K) was calculated by fitting concentrations measured at 0, 2, 4 hrs (n=3) to an exponential decay function: C(t)=C_0 e^{-Kt/V}. C(t): conc at time t ,C_0: initial conc, V: volume. Filtration was tested in water and fetal bovine serum at various TMP (1, 2, 4 psi) using cross flow velocities at 0.1, 0.5 and 3ml/min. Platelet adhesion and activation were evaluated by immunohistochemistry (IHC) and scanning electron microscopy (SEM) after flowing human blood for 2 hrs at 2ml/min.

Results:
HD-SNM had a ~2.5 fold improvement in K, consistent with mathematical models. Creatinine, BUN and phosphorus clearances were 232.5±17.2, 314.6±15.6, 191.4±6.3 ml/min/m² (HD-SNM) and 85.5±10.6, 135.3±22.9, 75.5±12.8ml/min/m² (HF-SNM), respectively. HD-SNM maintained mechanical integrity at over 200mmHg. The HD-SNM also showed comparable filtration rates (71.5 ± 21.3ml/hr/mmHg/m²) and selectivity to HF-SNM. IHC for CD62 and SEM images showed similar levels of platelet activation and adhesion.

Conclusion:
These preliminary studies demonstrate significant improvement in diffusive clearance with the HD-SNM while still maintaining mechanical robustness, selectivity, permeability and hemocompatibility.