Evaluation of Next-Generation Silicon Nanopore Membranes Optimized for Diffusive Clearance

Steven Kim^{1,2}, Charlie Blaha², Zohora Iqbal², Clarence Chow², Rishi Kant², Ben Chui³, Ken Goldman⁴, Jaehyun Park², Eun Jung Kim² William Fissell⁵, Shuvo Roy² ¹ Nephrology, UCSF ²Bioengineering, UCSF ³Ben Chui Consulting ⁴H-Cubed ⁵Nephrology, Vanderbilt University

Background:

Silicon nanopore membranes (HF-SNM) designed for hemofiltration have demonstrated remarkable permeability and selectivity. However, diffusive clearance was hindered by their thickness. Here we report hemodialysis-SNM (HD-SNM) with enhanced diffusive clearance.

Methods:

A new MEMS (microelectromechanical systems) fabrication protocol utilizing nested etch-back techniques was used to decrease the effective SNM thickness (HD-SNM 100um vs. HF-SNM 400 um). Diffusive clearances of polyethylene glycol coated HD-SNM and HF-SNM with sub-10 nm pore sizes were tested in a parallel plate flow cell. PBS with Cr 10 mg/dL, BUN 90 mg/dL, and albumin 3 g/dL was recirculated (45ml), while dialysate (160 mEq NaCl) was recirculated in a counter-current fashion. At $Q_d=Q_b=10$ ml/min and zero transmembrane pressure (TMP) clearance was independent of flow rate. Solute clearance (K) was calculated by fitting concentrations measured at 0, 2, 4 hrs (n=3) to an exponential decay function: $C(t)=C_i e^{-Kt/V}$. C(t): conc at time *t* , C_i : initial conc, V: volume. Filtration was tested in water and fetal bovine serum at various TMP (1, 2, 4psi) using cross flow velocities at 0.1, 0.5 and 3ml/min. Platelet adhesion and activation were evaluated by immunohistochemistry (IHC) and scanning electron microscopy (SEM) after flowing human blood for 2 hrs at 2ml/min.

Results:

HD-SNM had a ~2.5 fold improvement in K, consistent with mathematical models. Creatinine, BUN and phosphorus clearances were 232.5 \pm 17.2, 314.6 \pm 15.6, 191.4 \pm 6.3ml/min/m²(HD-SNM) and 85.5 \pm 10.6, 135.3 \pm 22.9, 75.5 \pm 12.8ml/min/m²(HF-SNM), respectively. HD-SNM maintained mechanical integrity at over 200mmHg. The HD-SNM also showed comparable filtration rates (71.5 \pm 21.3ml/hr/mmHg/m²) and selectivity to HF-SNM. IHC for CD62 and SEM images showed similar levels of platelet activation and adhesion.

Conclusion:

These preliminary studies demonstrate significant improvement in diffusive clearance with the HD-SNM while still maintaining mechanical robustness, selectivity, permeability and hemocompatibility.