T1530-11-74

Determination of unbound piperaquine in human plasma

Liusheng Huang¹, Vong Sok¹, Erika Wallender¹, Grant Dorsey², Philip Rosenthal², Francesca Aweeka¹

¹Drug Research Unit, Department of Clinical Pharmacy and ²Department of Medicine, University of California San Francisco

CONTACT INFORMATION: Liusheng.huang@ucsf.edu.

PURPOSE

Piperaquine (PQ) is a highly protein-bound drug commonly combined with dihydroartemisinin for the treatment and prevention of malaria. Variation in plasma protein contents during pregnancy and infancy may affect the pharmacokinetic exposure of unbound drug, leading to alteration of clinical outcomes. Previously we reported total PQ exposure was 40% lower in pregnant women and children compared to non-pregnant adults, but unbound PQ exposure remains unclear. Therefore, we developed a LC/MS/MS method to determine unbound PQ exposure in human plasma.

OBJECTIVE(S)

To develop a sensitive method for quantitation of unbound PQ in human plasma with a lower limit of quantification (LLOQ) of \leq 50 pg/mL.

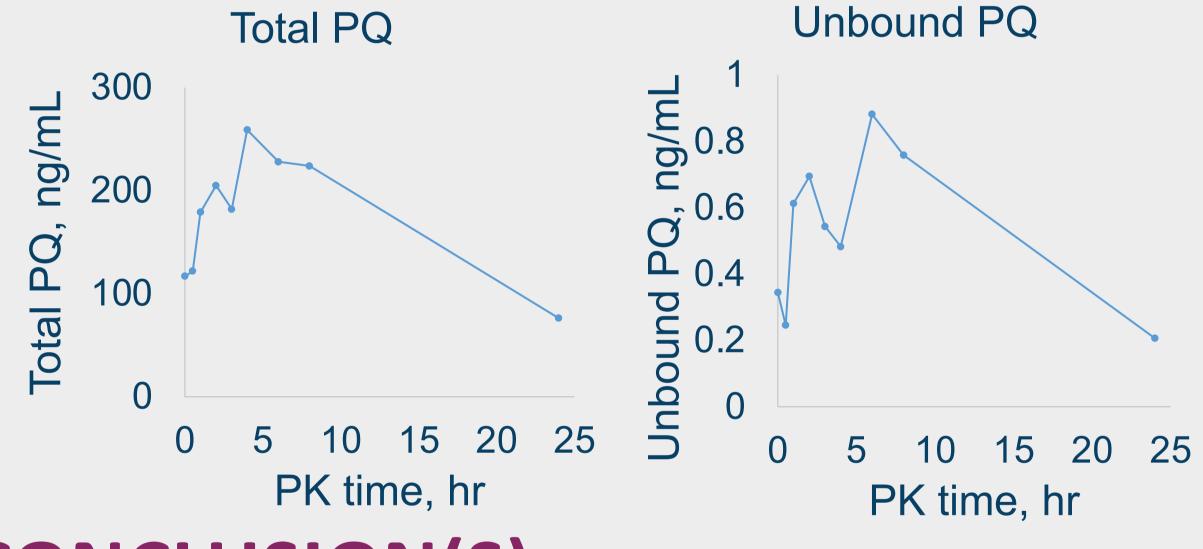
METHOD(S)

Ultrafiltration: Microcon Ultracel® centrifugal filters (10k NMWL) were used to remove proteinbound drug. Plasma (100µL) was added to the benzalkonium chloride (BAK) treated filter cup and centrifuged at 13,400 rcf at 37 °C for 9 min. The filtrate was mixed with ½ volume of PQ-d₆ (IS). **LC-MS/MS system**: A Sciex TripleQuad 6500+ Tandem Mass Spectrometer coupled with a Water UPLC (I Class) system was used (Fig 1).

RESULT(S)								
MS/MS optimization : APCI ⁺ was used to minimize matrix effect that was significant when ESI ⁺ was used.								
Table 1. Optim	ized MS	/MS pa	aram	eters	\$			
Source parame	ters	T, °(C (CUR	NC	Gas	51 C	CAD
		400		30	4	45		9
Compound par PQ, 535/288	ameters	DP 86		EP 10	CE 45	CXI 9		ne, ms 50
$PQ-d_6$ (IS), 541/	294	85		10	45	9		50
collision energy,	dissociation. DP, declustering potential, EP, entrance potential, CE, collision energy, CXP, collision cell exit potential. LC optimization : PFP (30x2.1mm, 1.7μm, Waters							
better than PFP(50x2.1mm, 1.9 μ m, Agilent Tech). The mobile phase A=20mM NH ₄ FA, 0.14%TFA, B=0.1%TFA in acetonitrile [later modified to methanol-acetonitrile(4;1, v/v)]. Flow rate 0.8mL/min.								
Time, min			1.0	1.4	0 1	.41	1.50	
Sovent B,%	30		80	80		30	30	
• With the greatention for the both 0.68	imes fo	or PQ						are
Fig 2. Chromat	ogram o	f PQ a	t LLC	DQ le	vel (0	.02ng	g/mL).	
හි ප් 4000	Sic	nal/no	ise=	18	NI	` _N ∕∕`		
<u>.</u> ≦ 3000	Signal/noise=18 N							
1000 June 1000 J								
					Ϋ́ CI			CI
1000		0		hand	~~. ^^^^	m la mai	man	
		0.5			1			1.5
Retention time, min								

Ultrafiltration: To test for nonspecific binding on the ultrafiltration device, PQ was dissolved in 10% acetonitrile 0.5% formic acid and the solutions were directly filtered through the device. We observed 50% binding to the filter devices at 10 ng/mL PQ and 29% at 100 ng/mL PQ. However, following treatment of the filters with 5% BAK, PQ was fully recovered from the ultrafiltration (Table 3).

Table 3.	Direct filtra	tion	Pretreated with BAK				
PQ, ng/mL	10	100	0.1	10			
Recovery, %	50	71	103	104			


Validation: the method was validated based on the guidelines from NIH-funded Clinical Pharmacology Quality Assurance Program. Calibrators (0.02, 0.05, 0.1, 0.2, 05, 1, 2, 5 ng/mL) and QC samples (0.06, 1.5, 4 ng/mL) were prepared in plasma filtrate with or without BAK pre-treatment.

- Intra-inter-day precision and accuracy were within $\pm 15\%$ (Table 4).
- Matrix effect was evaluated with 6 lots of plasma filtrate spiked with 0.06, 1.5, 4 ng/mL PQ. The CV% of slopes from linear regression of the 6 lots samples was 3.2% (<5%), suggesting matrix effect did not impact quantitation of PQ.

Table 4	Intra-day				Inter-day				
Nominal*	0.02	0.06	1.5	4	0.02	0.06	1.5	4	
CV%	6.2-15	4.4-11	4.7-11	2.5-8.6	12	9.7	8.5	7.0	
Dev%	3.8-15	-8.9-1.6	-7.3-3.2	-0.67-9.8	9.9	-4.9	-2.9	4.2	
n	6	6	6	6	18	18	18	18	

Application: We carried out a pilot analysis of clinical samples from two pregnant woman. When the method was applied to the 1st subject, there was an interfering peak for PQ. We resolved it after mobile phase B was modified to methanol-acetonitrile (4:1) with 0.1%TFA. The concentration-time profile of unbound and total PQ from a pregnant woman is shown in Fig. 3. The unbound PQ ranged from 0.19 -0.39% of the total PQ concentration.

Fig.3. Concentration-time profile for unbound and total PQ from a pregnant woman receiving PQ chemoprevention.

CONCLUSION(S)

A sensitive LC-MS/MS method was developed for quantification of unbound PQ in human plasma with an LLOQ at 0.02 ng/mL. To our best knowledge, this is the most sensitive method for PQ quantitation. Application to a clinical pharmacokinetic study is ongoing.

FUNDING/ACKNOWLEDGMENT

This work was supported by NIAID (# R01AI117001 and 4P01HD059454-09). We thank Amelia Deitchman, David Gingrich and Florence Marzan.

